
– 3 6 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

Inclusive Rights of Copyleft
A study on the scope of the free and open source
software licence in a European context
By Saar Hoek

ABSTRACT

The current legal climate does not yet provide
sufficient clarity on the workings, limits and rights
conferred through licences granted on Free Open
Source Software (FOSS). Generally, copyright is
accepted as applying to FOSS and therefore the
granted licence; by contrast, whether patents on the
computer implemented invention (CII) encompassed
in the software are implicitly licensed as well, is less
clear. In terms of copyright, this article will examine
the lack of clarity and unison concerning certain
definitions in the most commonly used licenses,
including the scope of the concepts of “distribution”
and “derivative” work with GNU’s General Public
License (GPL) as a guideline. Patent inclusion within
the grant will be set out against the nature of patent
protection within the field; as well as complications
as concerned implied license grants or the lack
thereof.

1. COPYLEFT: THE ORIGIN STORY
1.1. Protecting Software
1.1.1. Copyright: Software as a Literary Work
The classic method of intellectual property protection for
software is copyright. The choice of copyright originates
in the 1980s. Initially, the World Intellectual Property
Organization (WIPO) intended to create a sui generis
protection for software, but this project was abandoned in
1985.1 While software is mostly functional in nature,
patents could not be applied to computer programs at the
time in both the United States (US) and Europe, as their
respective laws forbade it.2 Furthermore, the procedure to
acquire a patent is lengthy and quite complicated and a
more accessible protection was needed. Copyright was
the most suitable solution.
	 In the European Union (EU), this was codified in 1991 in
the Software Directive ’913, and adjusted in the 2009
Software Directive4. This text mandated that the European
countries would henceforth protect computer programs
(in this case meaning the actual code) as ‘literary works’ in
line with the Berne Convention.5 There are some issues
with the choice of copyright for software protection, as

software differs greatly from the subject matter that copy-
right was drafted to protect.
	 The first issue is with the protection term. A piece of
code will automatically be protected for the life of the
author plus seventy years.6 Code is functional and can be
paramount to progression in software development. To
protect such a work with a monopoly that can last for over
a century, in a field where a year is a long time in terms of
developments, seems excessive.
	 Second, software developers write code to serve a pur-
pose. A computer program is a process; it performs a task.
Neither the performance nor the task are protected by
copyright, just the source code as it is written, as if it were
a novel rather than a kind of equipment. This poses real
problems in the protection of a work. If an idea for an app
is stolen and the exact same app is built using different
code, there is nothing the author can do.
	 In addition, there is an issue of national sovereignty.
Although the Software Directive does set out the general
scope of protection in the EU, there is no regulation gover-
ning copyright. In addition, most licences used on FOSS
originate in the US. These facts and the resulting inter-
pretations make copyright for software complicated and
impractical, considering its international nature.
	 Lastly, it is profoundly challenging to ascertain when
something is copied code. How many changes must be
made for a code to be considered independent, when the
change of a single symbol can make a huge difference in
the functionality of the software? Certainty regarding
permissible actions is crucial when utilising free and open
source code, as it will be incorporated into a final product
and could pose substantial problems in terms of infringe-
ment if handled incorrectly. When using software distri-
buted under a free and open source licence, the question
remains to what extent something has to be changed to
no longer be seen as a copy or unauthorised utilisation of
said software. This issue will be the focus of this article,
focusing on copyright and more specifically on what con-
stitutes a derivative work and what is meant by distribu-
tion under a FOSS licence.

1.1.2. CIIs and Patent Protection
As mentioned, software has historically been excluded
from patentability in many legislations. Under Article
52(2)(c) European Patent Convention (EPC), this is still
largely the case, mandating that programs for computers,
as such, are is not patentable. However, neither is the

ISSN 2003-2382

– 3 7 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

1	 Annette Kur, Thomas Dreier, European
Intellectual Property Law, (Edward Elgar
Publishing Ltd. 2013), 250.

2	 Art. 52(2)(c) and 52(3) Convention on the
Grant of European Patents of 5 October 1973
(hereinafter EPC).

3	 Council Directive 91/250/EEC of 14 May 1991
on the legal protection of computer programs
(hereinafter Software Directive ‘91).

4	 Council Directive 2009/24/EC of 23 April 2009
on the legal protection of computer
programs (hereinafter Software Directive).

5	 Berne Convention for the Protection of
Literary and Artistic Works of 9 September
1886 (hereinafter Berne Convention).

6	 Council Directive 93/98/EEC of 29 October
1993 harmonising the term of protection of

copyright and certain related rights
(hereinafter Copyright Duration Directive),
Art. 1.

7	 EPO Guidelines for Examination, ‘Index for
Computer-Implemented Inventions’ (EPO, 6
March 2017) https://www.epo.org/
law-practice/legal-texts/guidelines/cii-index.
html accessed 6 December 2020.

8	 The user interface is the component of the
operating system that enables user
interaction. It is the manner in which the
software is shown to the user. This might be
expressed in the graphical icons for an app
or the manner in which the mouse pointer
moves on your laptop.

9	 European Commission, The Trends and
Current Practices in the Area of Patentability

of Computer Implemented Inventions within
the E.U. and the U.S. (European Union 2016),
10.

10	 T 208/84 (computer-related invention/VICOM)
of 15.71986 , EP:BA:1986:T020884.19860715,
Reasons for the Decision, p. 6.

11	 European Commission, Study of the Effects
of Allowing Patent Claims for Computer-Im-
plemented Inventions (European Union
2008), 6.

12	 Ibid. 7.
13	 Proposal for a Directive of the European

Parliament and of the Council on the
patentability of computer-implemented
inventions, rec. 22–23 (as cited in Kur (n 1)
138).

functionality of a program protec-table by copyright. This
leaves a gap where protection is needed for the solution
that a computer program can provide to a technical problem,
without protecting the program as such. The European
Patent Office (EPO) refers to this possibility, where the
invention is formulated not as a computer program but as
a solution whose performance is dependent on a computer
(program), as Computer-Implemented Invention (CII).7
Examples of this may include Graphical User Interface
(UI)8 Inventions, Data Transmission Inventions and
Cloud Computing Technology Inventions.9 The patenta-
bility of CIIs has been possible since the Vicom case, where
the EPO Board of Appeal first decided that although a
computer program as a mathematical method cannot be
protected, this does not preclude the patentability of a
technical process which is carried out under the control of
a program10. As will be discussed next, this results in an
oxymoron.
	 CIIs are not as clear as one might have hoped. The concept
refers to an invention that can be implemented through
software, hardware, or both. This creates a somewhat
paradoxical loop within the law, because although patents
on software are unlawful, it is possible to get a patent on a
CII that is implemented solely in software. However, if
this was not allowed, CIIs which were implemented in
hardware but which could possibly be embodied in
software would also unavoidably be excluded.11 Whether

this is desirable is a matter unto itself, but it was certainly
not the intention behind the law. In a report for the Euro-
pean Commission, the authors even went so far as to say
that:

‘In sum, the term CII is flawed at an ontological level.
This may be a confusing conclusion, but it is helpful to
prevent even more confusion.’12

A patent grant thus does not result in a cumulative pro-
tection with copyright, but instead covers other sub-
ject-matter, upon which disparate acts will infringe, even
though both subject-matters may be exclusively encom-
passed by the same software. In the words of the European
Commission:

‘A patent protects an invention as delimited by the patent
claims which determine the extent of the protection
conferred. Thus, the holder of a patent for a computer
implemented invention has the right to prevent third
parties from using any software which implements his
invention (as defined by the patent claims). This prin-
ciple holds even though various ways might be found
to achieve this using programs whose source or object
code is different from each other and which might be
protected in parallel by independent copyrights which
would not mutually infringe each other.’13

– 3 8 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

It should be noted that the above quote is taken from a
proposed directive on CII, which was rejected. National
law is therefore not harmonised with what is stated
therein. In fact, to make matters worse, each Member State's
national law governs the post-grant life of a patent there is
no Unitary Patent (yet). Even if the requirements for
patentability are substantially similar, interpretations and
principles conceived through a body of national case law
in infringement and invalidity cases, for example, have
resulted in national approaches that may not be entirely
consistent with one another or with the Position of the.14
This can be exemplified by the principle of technical
character. Right now, codification of this exists only in
form of the phrase ‘all fields of technology’ in Article 52(1)
EPC, which sets out the substantive criteria for patenta-
bility. However, what exactly this means is unclear, as the
EPO has used miscellaneous explanations and various
terms, including technical effect, technical contribution
and further technical effect.15 We can identify the resulting
uncertainty and divergence in the fact that the principle is
diligently used in German law, where it originates, whereas
a United Kingdom (UK) court has dismissed the argu-
ment on technical character as ‘something of a counsel of
desperation’.16
	 Though Article 52(2)(c) EPC excludes software from
patentability, this exclusion is to be read narrowly. The
EPO has explained it as such:

‘A computer program product is not excluded from
patentability under Article 52(2) and (3) EPC if, when
it is run on a computer, it produces a further technical
effect which goes beyond the "normal" physical inte-
ractions between program (software) and computer
(hardware).’17

As already mentioned, a proposed directive on the protec-
tion of CIIs was rejected. Presently, patent protection is still
based solely on the EPC, as well as national laws, revised
for compliance with the EPC in light of EPO practice.18
The lack of harmonised EU law on the patentability of
computer programrelated innovation has contributed to
the current situation in which there is no clear delinea-
tion between a computer program (as such) which may
not be protected by a patent and a patentable CII.19 To
avoid the exclusion in in Art. 52(2) EPC and correspon-
ding national provisions, patent applications are often
worded in a cryptic manner.
	 This, in turn, results in a few issues. First, because there
is no true classification for patents such as these, it is dif-
ficult – even nearly impossible – to find them effectively
and thereby ascertain the state of the art.21 This means
that granted patents relevant as prior art might often be
overlooked, even in case of diligent research, and the
amount of patents might therefore increase unjustly, there-
by lowering the quality of patents. Another result of inef-

Figure 1.
A patent application filed by Spotify for which a patent was granted. The abstract explains the process which is enacted by a computer.
This invention is entirely embodied in software.20

– 3 9 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

fective searching is that it is difficult to ascertain whether
a certain type of conduct infringes upon a certain patent,
if said patent is hard to find. Lastly, because patents pro-
tect and therefore formulate an idea rather than an ex-
pression, it is not required that source code is disclosed.
This is curious, as Article 100(b) EPC clearly states that
any patent application must disclose the invention in
such a manner that a person skilled in the art might carry
it out. The solution in such a patent is often entirely en-
crypted in computer code, and its absence in a patent spe-
cification would make it a burdensome task for the person
skilled in the art to carry out the invention. Additionally,
one might argue that due to this type of reasoning, the
patents granted for CIIs might be unduly broad, and thereby
not fulfilling the requirements of inventive step in Article
56 EPC.22 In fact, in the case of software-implemented in-
ventions, it is often not a specific solution that has been
granted a patent but rather a specific problem, because
the expression – the source code, the computer program
itself, which enacts the solution – is excluded from paten-
tability.23

1.2. Conception of Copyleft
1.2.1. From Sharing to Selling

‘When I started working at the MIT Artificial Intelli-
gence Lab in 1971, I became part of a software-sharing
community that had existed for many years. Sharing of
software was not limited to our particular community;
it is as old as computers, just as sharing of recipes is as
old as cooking.’24

 – Richard Stallman

Historically, source code has been provided along with
whatever program it represented. Indeed, back at the be-
ginning of software development, the attitude towards its
identity and accessibility was built upon long traditions of
collaboration and openness.25 These attitudes existed
because software was seen as a means to an end – the end
being hardware and software being a mere necessity to
make it function, and not possessing any independent
value. One contributing reason was that the system of up-
dating and tweaking technology was very different from
the one-click-culture that we enjoy today. As a user of
“primitive” technology (pre-1980s), it was important that
the source code to software was freely accessible as it
might be necessary to update and modify it yourself in

14	 European Commission (n 11) 11.
15	 Ibid. 15.
16	 CFPH LLC [2005] EWHC 1589 Pat. [2006],

R.P.C. 5.
17	 T-1173/97 (Computer program product/IBM)

of 1.71998, , EP:BA:1998:T117397.19980701,
Reasons for the Decision, p. 2.3-2.4.

18	 Anna Haapanen, Free and Open Source
Software Licensing and the Mystery of
Licensor’s Patents (IPR University Centre,
2017), 73.

19	 Kur (n 1) 139–144.

20	 Spotify AB, ‘Crowd-sourcing of automatic
music remix rules’, EP2808870A1, granted 16
March 2016.

21	 Directorate-General for Internal Policies of
the European Parliament, Legal Aspects of
Open Source Software (Policy Department C:
Citizen’s Rights and Constitutional Affairs
Workshop, 2013), 45.

22	 T 939/92 (Triazoles) of 12.91995, ,
EP:BA:1995:T093992.19950912, Reasons for
the Decision, p. 2.4.2.

23	 European Parliament (n 22) 45.

24	 Robert Stallman, Free Software, Free Society
(FSF 2002), 23.

25	 Ibid. 1–3.
26	 Ibid 1.
27	 Stallman (n 24) 18.
28	 GNU’s Not Unix, ‘Frequently Asked Questions

about the GNU licenses’ (GNU Operating Sys-
tems, updated 9 February 2019) https://www.
gnu.org/licenses/gpl-faq.html accessed 9
March 2020.

order to support new hardware or add features.26 Personal
computers had not entered the landscape yet and compu-
ting was still intrinsically a thing of science and educa-
tion. As this went on for years, it created a norm that was
hard to depart from, and it can be argued that the prin-
ciple of free access is still present among programmers.
	 However, a shift occurred in the 1980s. Software started
being pursued as a business, which meant that the willing-
ness to share proprietary source code decreased signifi-
cantly. For the people working in software, this was a
deeply frustrating experience. Not only did the amount of
easily accessible work material decrease; they were also
suddenly subject to non-disclosure agreements and law-
suits where the culture used to be open collaboration.
One of these frustrated programmers was Robert Stall-
man. In his own words:

‘This meant that the first step in using a computer
was to promise not to help your neighbour. A coope-
rating community was forbidden. The rule made by
the owners of proprietary software was, “If you share
with your neighbour, you are a pirate. If you want any
changes, beg us to make them.” ’27

1.2.2. Copyleft and Licence Types
To combat increasing proprietary approaches and keep
software free (as in ‘free speech’, not as in free from cost),
Stallman founded the Free Software Foundation (FSF),
under which he started developing a new operating system
called “GNU’s Not Unix!” (GNU) and conceived the con-
cept of copyleft. The idea is based on copyright, but takes
it in reverse. Instead of using it as a means to privatise and
monopolise a work, it ensures that the work remains in
the public domain. Under copyleft, one is free to use, distri-
bute, modify and copy the program – but one is not al-
lowed to add subsequent restrictions. What is free must
remain so; if a copylefted program is incorporated into
another program, the source code must be included, in-
cluding any independently made modifications or addi-
tions.28

– 4 0 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

Therein lies the distinction between free software and
copyleft. A licensed program can satisfy the requirements
for the former but not for the latter, e.g., when a piece of
code can be freely included in a proprietary program
without the condition that its source code must be included.
Such FOSS licences are generally referred to as permissive
licences. The difference boils down to that the user further
along the distribution chain, who obtained the initial
open source software only through its incorporation in
other software, is still subject to any original copyleft
licence. Permissive licences entail no such restrictions.
The copyleft licence is inherently connected to the software
and travels with it, while permissive licences can be replaced.
	 Stallman drafted his copyleft ideas in the General Public
License (GPL), which is widely used to this day. Other po-
pular modules include the MIT licence and the Apache
licence, both permissive licences.29 The Open Source Ini-
tiative (OSI), which is an organisation that approves FOSS
licences, is also noteworthy. They opt not to use the term
‘free software’ but rather ‘open source’, because – though
they have similar goals and history as the FSF – their foun-
dation is pragmatic and business-oriented, rather than
ethical in nature, and they have felt that the term ‘free’
has too many moral connotations.30 Here, both terms will
be used synonymously.

1.2.3. Compatibility
With any licence, a large amount of freedom is granted to
its drafter. This has resulted in a multitude of free software
licences, not all of which are compatible with each other.31
However, unlike in most fields where licences are used, the
field of software is highly collaborative and strangers
across the globe can – and will – easily make use of its
subject-matter. The chain of distribution and adaptation

29	 Ayala Goldstein, 'Top 10 Open Source
Licenses in 2018: Trends and Predictions'
(White Source Software, 13 December 2018)
https://resources.whitesourcesoftware.com/
blog-whitesource/top-open-source-licenses-
trends-and-predictions accessed 10 March
2020.

30	 Michael Tierman, ‘History of the OSI’ (OSI, 19
September 2006) https://opensource.org/
history accessed 9 March 2020.

31	 GNU operating system, 'Various Licenses
and Comments about Them' (GNU Operating
System, 13 March 2017) https://www.gnu.
org/licenses/license-list.en.html accessed 9
March 2020.

32	 The most commonly used website where
programmers up- and download freely
accessible source code.

33	 Aaron Williamson, Licensing of Software on

GitHub: A Quantitative Analysis, Linux
Collaboration Summit, 2013.

34	 Axel Metzger, Free and Open Source
Software (FOSS) and Other Alternative
Licensing Models (Springer, 2016), 7–12.

35	 Metzger (n 35) 6.
36	 Metzger (n 35) 12.
37	 Patrice-Emmanuel Schmitz, ‘The European

Public Licence (EUPL)’ [2013] 5(2)
International Free and Open Source Law
Review, 121.

38	 Software as a service means that a program
is not downloaded or bought on an external
disc or drive, but rather functions through a
cloud computing system and is accessed via
the internet. The Citrix web environment is
an example.

39	 As most European courts operate on a civil
law system rather than common law, a

contract is a little less free. For example, a
general exception to liability is not accepted
in most European courts.

40	 Schmitz (n 37) 122.
41	 EUPLv1.1, European Union Public Licence

version 1.1 (European Commission, January
2007) https://joinup.ec.europa.eu/sites/
default/files/custom-page/attachment/
eupl1.1.-licence-en_0.pdf; European Union
Public Licence version 1.2 (European
Commission, May 2017) https://joinup.ec.
europa.eu/sites/default/files/custom-page/
attachment/eupl_v1.2_en.pdf accessed 9
March 2020.

42	 Schmitz (n 37) 122.
43	 Javier Casares, ‘EUPL: European Union Public

Licence’ (EUPL, updated 27 June 2017)
www.eupl.eu accessed 9 March 2020.

is almost impossible to track, which has made it difficult
to keep track of how the licences work in practice, how
they affect each other, how an American-written copy-
pasted licence applies in an EU state and so forth. A study
done in 2013 suggested that many GitHub32 users did not
license their source code at all.33 The situation has grown
so complex that it is very hard to comprehend or get an
overview of. For the sake of clarity, this article will adopt
the GPL as connecting theme throughout. This means the
focus will be on copyleft licences and the licences compa-
tible with GPL. The reason it that, a copyleft licence poses
strict obligations on its licensee, such as the publishing of
source code, which a permissive licence does not. This
means that disputes and legal uncertainties regarding its
scope are more consequential. The GPL is the obvious
choice, as it is widely used, widely discussed, has very
strict obligations and is the original copyleft licence.

1.3. The European Union
1.3.1. Legal Basis
It may seem counterintuitive that a contractual solution
originating in US Copyright Law can function in European
countries (and it does not completely, see section 1.3.3.),
but because it is a contract it does not supersede copyright
law. Rather, it is an overlying agreement, which grants the
user and proprietor certain rights and obligations. Any in-
fringement will be settled under the relevant national law.
In fact, national legislation varies quite a bit between the
EU member states, as illustrated in Figure 2 below. Note
that at the time of the investigation – 2016 – there were
still many countries in which no case law existed on FOSS
or alternative licences (such as the Creative Commons
licence). In the countries that did have some reported case
law, this usually encompassed only one or two cases.34
	 In the absence of extensive case law, an analysis of the
terms used in most copyleft licences will be helpful to get
a picture of what happens when FOSS is licensed. In Figure
2, under the question 4, it is noted that eleven EU states
have jurisdiction-specific standard licences for FOSS. In
all these cases, the licence in question is the so-called
European Union Public License (EUPL) for FOSS.36

– 4 1 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

1.3.2. European Union Public Licence
In the early 2000s, the European Commission started to
review the advantages of adopting a licence for open source
software. This occurred mainly in the context of programs
meant to improve interoperability (within EU institutions
and the public sector) and in relation to the development
of the information society.37 The Commission first set out
the eight conditions the chosen licence would have to
encompass, namely:

1.	 Grant all FOSS freedoms;
2.	 Ensure protection from exclusive software

appropriations (i.e., be a copyleft licence);
3.	 Have working value in all official EU languages

(so as to avoid the need for sworn translators);
4.	 Conform with EU copyright law and terminology;
5.	 Include the ‘communications to the public’ right,

including web distribution and software as a service38;
6.	 Clarify applicable law and competent court;
7.	 Have an approach to warranties and liabilities that

conforms with case law39;
8.	 Be comprehensive and pragmatic, avoid complexity

and excessive length.40

Research found that no existing licence complied with
four of these requirements (3, 4, 6 and 7). Already, this

reveals something about the GPL in a European context,
as it was one of the licences considered, and therefore
apparently did not comply with the requirements that the
Commission deemed necessary – most importantly re-
quirement 4.
	 It was decided that the best option was to create a new
copyleft licence, which came to be the EUPL41. Version 1.1
was released in January of 2009 and accepted – in all its 22
languages – by the OSI in March of the same year.42 It has
grown popular primarily within governmental institutions
and public service organisations, as many countries in the
EU require that the local language be used at such institu-
tions.
	 The licence is compatible with the GPL. However, keep
in mind that this means that if the two licences are com-
bined, the combined product has to be licensed under the
GPL, as this is one of the main requirements of the GPL.43
The purpose of the EUPL was never to compete with exis-
ting licences, but rather to facilitate the use of FOSS in
European public governance. It is therefore not useful to
do a side-by-side comparison of the EUPL and the GPL.
However, because one of the main purposes of the EUPL
was to make a licence which would be compatible with EU
law, terminology and case law, it will be useful to use it as
guidance to see how best to interpret the GPL (and other
copyleft licences), for example as regards liability.

Figure 2.
Additional information on national provisions and case law regarding FOSS and alternative licensing in EU Member States and UK.35

– 4 2 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

1.3.3. Liability and Warranty
It is worth mentioning that most FOSS licences contain
an absolute disclaimer on warranty and liability. An ex-
ample is seen in the following, taken from the MIT licence,
which is currently the most popular licence on GitHub:44

‘The software is provided "as is", without warranty of
any kind, express or implied, including but not limited
to the warranties of merchantability, fitness for a parti-
cular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim,
damages or other liability, whether in an action of con-
tract, tort or otherwise, arising from, out of or in con-
nection with the software or the use or other dealings
in the software.’45

This is a typical example of a clause which is obviously
derived from common law. Such a clause will not hold up
in most courts of the EU, as shown in Figure 3. Even for
the Member States which are shown in the ‘yes’ column,
validity will not be absolute. For Belgium and Finland, lia-
bility and warranty in case of gross negligence or wilful
acts cannot be excluded. For the Netherlands, Croatia and
Finland, such claims may be void in cases concerning
consumers.46 Most Member States even have specific
mandatory provisions prohibiting such claims.47 In court,
such a provision will then be declared void, meaning the
author could be liable for damages. However, assigning
liability might be difficult in many cases, due to the inte-
roperability of software; a failure might be due to connec-
ted software or hardware.48

	 In the EUPL v1.2, the liability clause is rephrased as fol-
lows:

‘Except in the cases of wilful misconduct or damages
directly caused to natural persons, the Licensor will in
no event be liable for any direct or indirect, material or

moral, damages of any kind, arising out of the Licence
or of the use of the Work, including without limitation,
damages for loss of goodwill, work stoppage, computer
failure or malfunction, loss of data or any commercial
damage, even if the Licensor has been advised of the
possibility of such damage. However, the Licensor will
be liable under statutory product liability laws as far
such laws apply to the Work.’

Such a clause fits the civil law of most EU Member States
much better, and it is likely that most liability disclaimers
will be interpreted in this way, even if they expressly ex-
clude all liability. Therefore, authors and distributors
need to be cautious when locating or conducting business
in one of these territories, because the risk for liability
might be larger than assumed. Indeed, especially in most
cases of wilful misconduct or gross negligence, liability
cannot be avoided.

2. RELATIONSHIP COPYRIGHT AND FOSS
2.1. Rights Conferred

The OSI has established some general rules as to which
rights have to be included in a copyleft licence. Although
there are also many non-OSI certified licences, the rules
are still generally adhered to. Even if this were not the
case, the most commonly used licences, such as the GPL,
examined here, have been approved. Thus, for the purposes
of this article, these rights provide excellent guidance.50

	 The rights required by the Open Source Definition
(OSD) are: to use, reproduce, modify, communicate and
re-distribute the work.51 These refer, of course, to the
rights granted to the author of the work copyrighted in
the first place, under the Berne Convention.52 For software
in the EU, this has been established in Article 4 of the
Software Directive, with which national legislation will
have been harmonised. Use, reproduction, modification

Figure 3.
Validity of exclusion of any liability and warranty claims in some EU Member States.49

– 4 3 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

and communication will not be discussed herein. Use and
modification are quite straightforward and do not require
elaboration within this context. Reproduction and com-
munication are interesting in a software context, but issues
such as piracy and the communication of paid content on
a free site, for instance, are not particular to or larger in
copyleft licences as compared with other copyright issues
and thus will fall outside the scope of this article.

2.2. Distribution
2.2.1. Accessibility Requirement
Distribution is different from the other rights because it is
the only condition within a copyleft licence that imposes
an obligation on the user. Namely that what is free must
remain free. It is not the particularity of distribution in
and of itself that is the key component. Rather, it has to
do with the fact that any software licensed under the GPL
must remain licensed under the GPL.53 Therefore, if a
company uses any software licensed in this way, said
software must be published within their own product.
This is the case even in a compiled binary program made
up of many files, if the vast majority are licensed under a
permissive licence and only one is under a copyleft licence.
Permissive licences such as the BSD licence54 allow sub-li-
censing and defer to the GPL when used in combination.
This practice is referred to as deep-licensing.
	 The requirement which forces free accessibility is only
complicated when distributing, due to companies wan-
ting to sell – and therefore to distribute – finished pro-
ducts that contain some type of copyleft-licensed software.
In case of modification or reproduction, no such obliga-
tion arises. Notice can be provided in a multitude of ways.
For apps and other ‘clean software’, it is common that there
is a section called ‘Third Party Software’55 or something
similar. For hardware running GPL software, this is a bit
more complex – but one can implement a notice in the UI
or provide notice in the accompanying documentation.56
	 A company should make certain that these notices are
diligently provided, because if FOSS licensed under the
GPL is used within proprietary soft- or hardware and a
licensee has failed to license the combined product under
the GPL and not provided due credit, that is infringement
of the licence, which means liability for copyright infring-
ement.

2.2.2. Offer and Acceptance
In the EU member states, a licence agreement generally
must adhere to the conditions of offer and acceptance.57
The publishing of FOSS with a copyleft licence can cer-
tainly be accepted as constituting an offer. In the first
paragraph of the GPLv2, this offer is subject to the condi-
tion that the licensee

‘conspicuously and appropriately publish on each copy
an appropriate copyright notice’ as well as ‘keep in-
tact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients
of the Program a copy of this License along with the
Program’.

Moreover, it is stated in the fifth paragraph that the act of
modifying or running the program constitutes acceptance
to these terms and conditions. What this means for the
licensee is that if they distributes certain parts of FOSS
that had been licensed under the GPLv2, they have accepted
the licence terms. This will probably not be disputed by a
licensee, because without acceptance there would not be
a licence in the first place. If they have not distributed the
work under the GPLv2, the terms of the offer are not adhe-
red to and there will have been no licence agreement. In
fact, the GPL has a clear termination notice:

‘You may not copy, modify, sublicense, or distribute the
Program except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically
terminate your rights under this License.’

In these cases, there will thus have been no right to use
the software at all, which means that all uses of the software
falling under any of the exclusive acts in Article 4 of the
Software Directive – or in some cases Articles 2–4 of the
InfoSoc Directive – even including temporary reproduc-
tion, such as loading, would constitute copyright infring-
ement. In the case of the GPLv3, the licence may be re-in-
stated if the error is rectified. However, failure to do so
within 30 days of notice means that the licence will be
permanently terminated.58
	 Distribution is particular, too, in the sense that it can be
exhausted after a first sale or transfer of ownership pursu-
ant to Article 4(2) of the Software Directive (see section
2.5 below).

44	 Ben Balter, ’Open Source License Usage on
GitHub.com’ (GitHub, 9 March 2015) https://
github.blog/2015-03-09-open-source-licen-
se-usage-on-github-com/ accessed 9 March
2020.

45	 MIT licence, para. 3.
46	 Metzger (n 35) 24.
47	 See for example Czech Republic, Sec. 2898;

France, Art. 1386-1 CC; Germany, Sec. 309
no. 8 lit. b and no. 7 CC.

48	 Victoria Ho ‘EU Software Liability Law Could
Divide Open Source’ (CNET, 11 June 2009)

https://www.cnet.com/news/eu-softwa-
re-liability-law-could-divide-open-source/
accessed 9 March 2020.

49	 Metzger (n 35) 24.
50	 OSI, ‘Licenses by Name’ (OSI, updated 2 May

2019) https://opensource.org/licenses/
alphabetical accessed 9 March 2020.

51	 Schmitz (n 37) 124.
52	 Berne Convention Art. 6–13 pertaining to

literary works.
53	 GPLv2, section 0; GPLv3, section 2.
54	 Berkeley Software Distribution License

modified version (UC Berkeley, July 1999)

https://opensource.org/licenses/BSD-3-Clau-
se accessed 9 March 2020.

55	 The Spotify app can serve as an example: you
can find a list of their utilised copyleft-licen-
sed software with the following steps: Your
Library Settings About Third-party software.

56	 Fredrik Öhrström, Software Patents and Free
Software, (Stockholms Universitet Lecture,
Stockholm, November 2018).

57	 Haapanen (n 18) 89.
58	 GPLv3, Art. 8(3).

– 4 4 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

2.3. Infringement Repercussions
The stakes in case of infringement are higher than one
might think. It is natural to assume the risk is low because
FOSS can often be acquired for free – in the legal sense of
the word – so the damage would be nil in terms of actual
financial loss on the author’s part. However, in no EU
country does this prevent the author from filing for damages
if the licensee does not comply with the conditions of the
licence. The interpretation of what those damages might
be differs throughout the EU depending on national app-
roaches. In some jurisdictions, such as Hungary, relevant
loss might need to be proven, which could be proble-
matic. Other countries, such as Denmark and Germany,
might award damages based on fees for similar licences or
for comparable software, in which case the amounts could
be substantial.59 When there are interests in the US, which
is very possible considering the global nature of software,
the damages could prove to be greater. An example can be
seen in the 2017 US case in which CoKinetic Systems Cor-
poration filed suit against Panasonic Avionics Corpora-
tion. Both companies are global players in the in-flight
entertainment market. The claim was that Panasonic had
wilfully violated the GPLv2 requirements by refusing to
provide source code. Panasonic – holding a dominant market
share of about 70% – was accused of attempting to mono-
polise the market. The damages sought exceeded $100
million.60

59	 Metzger (n 35) 38.
60	 CoKinetic Systems, Corp. v Panasonic

Avionics, Corp 1:17-cv-01527 (S.D.N.Y. 2017).
61	 Öhrström (n 56).
62	 See for example European Commission,

Report on Open Source Licensing of Software
Developed by the European Commission
(hereinafter Commission FOSS Report),
(European Union 2004), p. 4., and Sören
Sonnenburg and others, The Need for Open
Source in Machine Learning [2007] 8 Journal
of Machine Learning Research, 2449–2453.

63	 GPLv3, 5(c).
64	 Directive 2004/48/EC of the European

Parliament and of the Council of 29 April
2004 on the enforcement of intellectual
property rights [2004] OJ L 157 (hereinafter
Enforcement Directive), Art. 10(1).

65	 Maribel Lopez ‘Samsung Explains Note 7

Battery Explosions, and Turns Crisis into
Opportunity’ (Forbes, 22 January 2017)
https://www.forbes.com/sites/maribello-
pez/2017/01/22/samsung-reveals-cau-
se-of-note-7-issue-turns-crisis-into-oppor-
tunity/#28f4f40624f1 accessed 9 March 2020.

66	 Not intended in the sense of someone
performing ‘digital breaking-and-entering’,
but as a description of those creating and
working with software etc.

67	 Robert Gomulkiewicz ‘De-Bugging Open
Source Software Licensing’ [2003] 64(1)
University of Pittsburgh Law Review, 75.

68	 Cristoph Helwig v VMware Global, Inc.
Zweigniederlassung Deutschland, Hamburg
District Court 310 O 89/15, 8 July 2016.

69	 A kernel is the core of an operating system. It
is the computer program that is the most
essential to the entire system, exercising

complete control. You can see it as the brain of
an operating system.

70	 Application Programming Interface. Every
website on the internet is stored on a remote
server. These are not mystical clouds of
information, but actual tangible computers
somewhere on the planet. If you type a
website’s URL into your browser, a request
goes out to its computer, the “server”. The
part of the server that handles such requests
and sends responses is the API. It is not the
entire remote server, rather the part that your
query interacts with.

71	 Ieva Giedrimaite ‘VMware GPL case is back in
court—will we finally get some clarity on the
meaning of "derivative work"?’ (IPKat, 28
January 2019) http://ipkitten.blogspot.
com/2019/01/vmware-gpl-case-is-back-in-
courtwill-we.html accessed 9 March 2020.

72	 Ibid.

Interestingly, this case was settled in 2018. It is near im-
possible to find cases involving FOSS licence infringe-
ment that have not been settled. This is best explained by
looking at the core of the conflict, which concerns not the
monetary repercussions, but the assets. Recall that FOSS
is essential in technological development and how wide-
spread it is. Open source is used in creating almost every
computer program. Institutions such as the European
Commission, conglomerates like Microsoft, engineers,
programmers, hardware manufacturers, research centres
at universities, leaders in AI – almost everyone uses open
source.61 Reasons to use open source are myriad: it saves a
lot of cost in development and due to its accessibility has
been checked, bug-fixed and improved upon by more
experts than a sole company could ever hope to afford.
Reports have been released from all sectors explaining the
need for the use of open source.62
	 Now imagine the effort, research, cost and time it takes
to develop advanced technology. This is illustrated in the
following quote Bill Joy, co-founder of Sun Microsystems,
Inc., which has been bought by Oracle:

‘We spent over a billion dollars a year in research. I
can’t just throw it all on the street.’

Herein lies the crux of the matter. The technology does
not just have worth, it is the worth. If a company is found
to be in breach of the GPL or another copyleft licence,
resulting in a lawsuit, the risk is having to give out any
separately developed adjacent or encompassing source
code – which most often is the source of profit. This risk
arises because the GPLv3 speaks of ‘covered work’ and the
GPLv2 and EUPL of ‘derivative work’; it is unclear what the
scope of these terms are and therefore how much of pro-
prietary code would have to be released.63 This is a daun-
ting prospect and could undo millions in research and
years in development.
	 There is also a risk that a product may need to be recalled.
The Enforcement Directive states that in case of infringe-

– 4 5 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

ment of intellectual property, the Member States shall
implement corrective measures including recall from
commerce, definitive removal from commerce or destruc-
tion – on top of damages.64 A company would not want to
risk having to recall an entire product line, which might
be the case if the software used is embedded into hardware.
If we take the example of the Samsung Galaxy Note 7, the
mobile device that had a battery which was prone to spon-
taneously exploding, recall of 2 million devices cost Sam-
sung an estimated $5.3 billion.65
	 Lastly, for the party filing the lawsuit, there can be more
business advantages from settling a case with the alleged
infringing party, if the plaintiff agrees to provide them
with valuable information and/or source code, which
would result in a stronger market position for both parties
than in case of public disclosure. It is a win-win for the
parties, but a loss for open source.
	 Due to the high risks of litigation, the unclarity of the
terms and the benefits of settlement, very few cases have
made it through to judicial rulings, meaning that many
aspects are yet to be clarified. The situation has resulted
in many companies being hesitant to use copylefted
software – putting them at a disadvantage, because of the
vast amount of resources that thereby become unavailable
to them. This, in turn, affects the speed of technology

development and the fairness of the playing field. Right
now, hackers66 suffer because they do not know which
licence to use, end users suffer because they do not under-
stand the terms of the licences, and companies suffer be-
cause they do not understand how open source might
affect their intellectual property.67 As illustrated above,
what is meant by ‘covered work’, ‘derivative work’ and
other similar terms is essential in relation to copyright.

2.4. Derivative Work
2.4.1. VMware v Hellwig
To get an idea of the complexity to be dealt with, let us
examine an example: the case of VMware v Hellwig.68 Linux
was the proprietor of a kernel69, licensed under the GPLv2.
The opposing party, VMware, was the proprietor of
another kernel, the vmkernel, as well as an API70 called
VMK API. Third parties were able to write drivers which
would interact with the VMK API. For Linux drivers, an
alternative compatibility option was offered through a
loadable kernel called vmklinux. These three facets to-
gether, vmkernel, VMK API and vmklinux, were all en-
compassed in the ESXi OS.71 vmklinux was licensed under
the GPLv2, but the ESXi system was available only under a
commercial licence.

Figure 4.
A system using the complete Linux kernel compared with a system with ESXi. The vmkernel is connected to the vmklinux and serves as a type of wrapper.72

– 4 6 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

The GPLv2, in term 0, states that:

“This License applies to any program or other work
which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this
General Public License. The "Program", below, refers to
any such program or work, and a "work based on the
Program" means either the Program or any derivative
work under copyright law: that is to say, a work con-
taining the Program or a portion of it, either verbatim
or with modifications and/or translated into another
language.”

Further, in term 2(b), it states:

“You must cause any work that you distribute or
publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the
terms of this License.”

The essential takeaway is that any derivative work must be
licensed under the GPLv2. What, then, is meant by a deri-
vative work? A work containing another work is usually
seen as a derived work, but here two separate definitions
have been used: ‘that in whole or in part contains or is
derived from […]’. Does the licence mean to widen the
term to encompass code and possibly even data or ideas
that are otherwise not protected under copyright law?
Unfortunately, the case in question has been dropped, in
part because VMware promised to remove its allegedly
Linux-derived technology from its OS. Thus, a definitive
and prompt answer will not be forthcoming, but the case
– which spanned over a decade – does illuminate the
kinds of issues that arise. If a component of a software is
licensed under the GPL, does that ‘contaminate’ the rest
of the software? How much interaction is allowed? After
how many modifications can a work be seen as indepen-
dent?

2.4.2. Legal Definition
Regrettably, the EUPL does not offer much help. Its defi-
nition of derivative works is as follows:

‘The works or software that could be created by the
Licensee, based upon the Original Work or modifica-
tions thereof. This Licence does not define the extent of
modification or dependence on the Original Work
required in order to classify a work as a Derivative Work.’

This comes down to that a work, to qualify as a derived
work, must be derived from an original work. This is not a
very helpful definition, especially given the fact that copy-
right in software development is unique, in that it is
necessary to utilise already available work. Avoiding this
would be like requiring that every car manufacturer rein-
vent the wheel every time a new model is created. More-
over, although it has been pushed into a characterisation
as a literary work, software is still functional. This means
that pieces of code work together to achieve a common
goal. In the GPL explanatory notes, it is stated that an

aggregation of a program is not protected under the GPL.
In other words: when a piece of GPL-licensed software is
used or modified in a program, in which it interacts with
independently owned code, the licence does not apply to
the resulting proprietary code. But where should the line
be drawn between the pieces of software? The FSF GPL
FAQ states that this depends on how ‘intimate’ two pro-
grams are.73

	 Of course, software giants want to make their products
as accessible as possible. This means that they want to be
able to process signals from already established software.
This is especially true for software new to an established
market, which can be exemplified by the failure of the
Windows Phone OS.74 The failure had little to do with the
soft- or hardware of the phone itself, but rather that the
new operating system (OS) was unable to process most
apps written for the established Android and iPhone OSs.
A user of Windows Phone would thus be unable to parti-
cipate in the state of the art, resulting in the OS flopping.
This issue could easily have been fixed by interoperability.
VMware attempted to promote this by making its own
software interoperable, but of course the software need to
work intimately together. That could mean that the entire
system would be a derivative work and the source code
would have to be released in order to avoid copyright in-
fringement and damage claims.
	 If we look to the Software Directive, it hints at what
could constitute a derivative work in Article 4(1)(b), which
states the exclusive right of an author to authorise:

‘the translation, adaptation, arrangement and any
other alteration of a computer program and the repro-
duction of the results thereof, without prejudice to the
rights of the person who alters the program.’

This is a broad interpretation, as it denotes any kind of
alteration. Moreover, it is unclear what translation means
in this context, as computer programs are not written in
human language, but rather in source code. This could
mean that a translation could be a reformulation of a pro-
gram in another programming language. This would
make the definition problematic, because that would
mean that the idea or essence of the program is protected
rather than the actual code – we have established that this
is not protectable by copyright. The article does mention
that the rights of the person who alters the program are
unaffected, but this is not the case for a copyleft licence,
which would impact precisely those rights – in the case of
the GPL they are often waived and assigned to the FSF.
	 Traditionally, a derivative work is subject to two condi-
tions: there must be a pre-existing work that it is based on
and a separate original contribution thereto.75 Like the
Software Directive, neither national legislation nor the
Berne Convention provide exhaustive lists on what can
constitute a derivative work.76 Rather, the lists provided
serve as illustration. The pre-existing work is the copy-
left-licensed FOSS that is used, and the separate original
contribution is the work that a company may want to dist-
ribute. Looking to the teleological context of a law regula-
ting derivative works and alterations, we can conclude
that it generally concerns versions of a work that are

– 4 7 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

directly connected to said work. A translation or cinema-
tographic adaptation of an original literary work is clearly
a version of that work, even if an original contribution is
made to it and protected independently. Therefore, taking
into account the nature of software, it is unlikely that the
law meant to include any sort of interconnected but inde-
pendent software as a derivative work, unless it was based
on the precise code itself. Recital 15 of the Software Direc-
tive supports such a view:

‘The unauthorised reproduction, translation, adapta-
tion or transformation of the form of the code in which
a copy of a computer program has been made available
constitutes an infringement of the exclusive rights
of the author. Nevertheless, circumstances may exist
when such a reproduction of the code and translation
of its form are indispensable to obtain the necessary
information to achieve the interoperability of an inde-
pendently created program with other programs. It has
therefore to be considered that, in these limited circum-
stances only, performance of the acts of reproduction
and translation by or on behalf of a person having a right
to use a copy of the program is legitimate and compatible
with fair practice and must therefore be deemed not to
require the authorisation of the rightholder. An objec-
tive of this exception is to make it possible to connect all
components of a computer system, including those of dif-
ferent manufacturers, so that they can work together.
Such an exception to the author's exclusive rights may
not be used in a way which prejudices the legitimate
interests of the rightholder or which conflicts with a
normal exploitation of the program.’

Clearly, the aim of the Directive is to promote the software
industry and provide solid legal protection for those in-
vesting in development. Additionally, a reading of the re-
citals reveals that the aim of the Directive is not to hinder
any type of use of software which is necessary for intero-
perability. Any other interpretation would leave very little
room for build-on technology and thereby stifle innova-
tion.

2.4.3. Evaluating a Work
As for many legal issues, the question if a work is derivative
should be evaluated on a case-by-case basis. However, the
evidence points toward a more narrow interpretation

than what was argued in the VMware v Hellwig case. To
include an entire OS as a derivative work of a kernel
because it attempts to be interoperable with said kernel
would negate exactly such investments that the Software
Directive and other copyright protection for computer
programs set out to protect. Of course, if the code for the
ESXi system had been substantially similar to the Linux
OS, this would have been different. A derivative work in
this context could be defined as a work based on an original
work, in its entirety or in part, unless (a) the part concerned
exists exclusively to aid in interoperability and promote a
harmonised software environment; and (b) the connected
software has been developed independently.
	 As this is a difficult evaluation to make, it might prove
useful to erect a legal fiction of a person adept at analysing
the similarity or intimacy between the original and the
allegedly derived work. This would correspond to the
‘person skilled in the art’ in patent law, the ‘average consu-
mer’ in trademark law and the ‘informed user’ in design
law.77 Naturally, copyright differs in nature, as it is an un-
registered right.78 However, due to its functional nature in
the case of software, a parallel can be drawn specifically
with the inventive step assessment in patent law. Here, it
must be emphasised that it is the expression of the code
that would be assessed, not the idea behind it or the func-
tionality thereof. This is a distinction that such a person
would have to comprehend. In patent law, the person skilled
in the art has the twin tasks of preventing trivial inven-
tions from being patented and preserving the patentability
of meritorious ones.79 When applied to a software environ-
ment – specifically in the context of copyleft licensing –
such a person could have the mirrored twin tasks of pre-
venting copycats while simultaneously safeguarding ori-
ginal contributions, notwithstanding the existing legal
framework in regard to copyright protection for computer
programs.

73	 Gomulkiewicz (n 67) 91.
74	 Vlad Savov, ‘Windows Phone was a Glorious

Failure’ (The Verge, 10 October 2017)
<https://www.theverge.
com/2017/10/10/16452162/windows-pho-
ne-history-glorious-failure> accessed 9
March 2020.

75	 Ramūnas Birštonas, ‘Derivative Works:

Some Comparative Remarks from the
European Copyright Law’ [2013] 5 University
of Warmia and Mazury Law Review, 67.

76	 Berne Convention, Art. 12; Ibid. 68.
77	 Naina Khanna and Jasmeet Gulati,

‘Knowledge/Skill Standards of a “Person
Skilled in Art”: A Concern Less Visited’ [2018]
17 John Marshall Intellectual Property Law

Review, 590.
78	 Berne Convention Art. 5(2).
79	 Ibid. 591; EPO Guidelines for Examination,

‘Part G: Patentability, 3. Person Skilled in the
Art’ (EPO, November 2019) <https://www.
epo.org/law-practice/legal-texts/html/
guidelines/e/g_vii_3.htm> accessed 9 March
2020.

– 4 8 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

2.5. Software Exhaustion
2.5.1. UsedSoft v Oracle
In 2012, the Court of Justice of the European Union (CJEU)
made a decision in the landmark case UsedSoft v Oracle.80
In this case, the CJEU laid down conditions in which the
download of a computer program could constitute a first
sale and thereby trigger exhaustion of distribution rights
per Article 4(2) of the Software Direc-tive, even if the
denominator of the agreement was a licence. Such an
occurrence would constitute a first sale if the acquirer was
allowed use, unrestricted in time and scope, of an object,
tangible or intangible, in return for a payment that corre-
sponded to economic value. This confirmed that intan-
gible objects can be property and that a download can be
seen as a sale.
	 How the findings fit in with FOSS is yet to be established.
The dynamics of the agreement between the author and
licensee (or possibly the first acquirer, if the title of first
sale is indeed attributed) are slightly different. In the case
of FOSS, the program is not readily provided as a down-load
– rather, the code is provided. Moreover, more often than
not, the software is available for free. The CJEU has placed
emphasis on both the perpetuity of the agreement and a
remuneration corresponding to economic value.81 The
former of these conditions would be fulfilled, as the very
nature of FOSS is that a licensee is able to do with the
software as they wish. The latter condition is not as certain,
as there often is no renumeration. It could be argued that,
because FOSS is available for free, its economic value is
zero. However, the estimated value will likely exceed zero,
as the wording of the CJEU is:

‘which enables the copyright holder to obtain a remu-
neration equal to economic value’

which implies that it is not the actual realisation of the
remuneration that is of importance, but rather the mere
possibility of obtaining remuneration.82 The fact that the
author has waived this and released the software free of
charge would be inconsequential. That would mean that
a FOSS licence could in fact constitute a first sale under
Article 4(2) of the Software Directive. However, this has
not been confirmed by the CJEU, so it remains to be seen
whether or not and in what manner the definition of a sale
might be applied to copyleft licences.

2.5.2. Consequences of Software Exhaustion for FOSS
Assuming that the contractual agreement when obtai-
ning FOSS would qualify as a sale, this would have two
important consequences for copyleft licences, both of

which are destructive to their nature and continuing exi-
stence. First, recall that a copyleft licence requires that
subsequent distribution of software, whether modified or
not, be subject to the same licence it was initially acquired
under. However, if the initial transaction is qualified as a
sale, this obligation is no longer compatible with the agre-
ement. In fact, the CJEU defined a sale as:

‘an agreement by which a person, in return for pay-
ment, transfers to another person his rights of owner-
ship in an item of tangible or intangible property belon-
ging to him’.83

This definition should be used uniformly and ubiquitously
throughout the EU, as the legislation makes no reference
to national legislation.84 The definition given speaks of a
complete transfer of rights of ownership. Therefore, the
previous owner would be in no position to oblige the sub-
sequent owner to further distribute the software only
under certain circumstances. Indeed, the purchaser would
hold the rights to the copy of the software and could dist-
ribute it further as they please, as any other situation
would be incompatible with the nature of a sale.
	 Second, to promote the free movement of software,
copyleft and permissive licences provide the user with the
right to modify software and then distribute the modified
software. However, in the case of a sale, such rights would
also fall away. A purchaser is not allowed to modify and
distribute the software without a licence from the copy-
right holder, because Article 4(2) Software Directive speci-
fically and exclusively exhausts the right to distribution.
Consequently, the further distribution of modified
software without a licence would constitute copyright in-
fringement of the rightholder’s exclusive rights under
Article 4(1)(b) Software Directive.85

	 In summary, if the licence in the case of FOSS is seen as
a contract of sale, the interests of both the author of the
software and those interested in utilising it in some manner
would be adversely affected. The benefits of using FOSS
would be eliminated. Fortunately, it seems unlikely that
the exhaustion doctrine of the Software Directive will be
applied in this manner. A careful reading of UsedSoft gives
a clear requirement that the first acquirer would need to
make their copy of the software unusable to trigger ex-
haustion and circumvent infringement.86 Two issues come
to mind when applying this to a FOSS situation. The first
is whether the sample of source code would qualify as a
copy at all. Since there is no real transfer of an object from
one person to another, is the case for tangible things, and
since UsedSoft applies also for a downloaded program, it

– 4 9 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

80	 Judgment of 3 July 2012, UsedSoft, C-128/11,
EU:C:2012:407.

81	 Ibid. para. 45.
82	 Ibid. para. 49.
83	 Ibid. para. 42.
84	 Ibid. para. 39.
85	 Ken Moon, ‘Where Does Free and Open

Source Licensing Stand in Europe?’
(Lexology, 20 August 2013) https://www.
lexology.com/library/detail.aspx?g=91b10f02-
8ae0-4e2d-bd20-4bba0e4fcfd6 accessed 9
March 2020.

86	 UsedSoft (n 80) para. 70.
87	 Ibid. para. 79.
88	 Judgment of 12 October 2016, Ranks and

Vasiļevičs, C-166/15, EU:C:2016:762, para. 43.
89	 Judgment of 23 January 2014, Nintendo and

Others Box, C-355/12, EU:C:2014:25, para.
23.

90	 Ibid.
91	 Judgment of 22 January 2015, Art &

Allposters International, C-419/13,
EU:C:2015:27, para. 40.

92	 Judgment of 19 December 2019, Nederlands

Uitgeversverbond and Groep Algemene
Uitgevers, C-263/18, EU:C:2019:1111, para.
1–2.

93	 Eleonora Rosati, Copyright and the Court of
Justice of the European Union (Oxford
University Press 2019), 47.

94	 Judgment of 12 September 2006,
Laserdisken, C-479/04, EU:C:2006:549, para.
53.

95	 Rosati (n 93) 57.
96	 Rec. 9–11 of the InfoSoc Directive.

is more likely that the publishing of FOSS in this case
would be seen as a ‘making available to the public’ rather
than ‘distribution’ and thus not trigger exhaustion. Second,
whether or not a user has made their own copy unusable
before a subsequent sale is impossible to guarantee in the
case of FOSS. In UsedSoft or other proprietary software
cases, the CJEU has granted that a copyright holder may
make use of technical protective measures, such as pro-
duct keys.87 While this is difficult for digital goods in any
case, it is in direct contradiction of the nature of freely
available software. Granted, this is a narrow reading of
UsedSoft, but such a view is supported by subsequent case
law, which implies that this was indeed the intention of
the CJEU.

2.5.3. A Nuanced View
In the 2016 case Microsoft, the question arose whether
such exhaustion could extend to the backup copy that a
first acquirer is allowed to reproduce per Article 5(2) of
the Software Directive.88 The conclusive answer from the
CJEU was no: the backup copy cannot be sold and is
meant purely for personal use, thus already providing a
limit to the exhaustion principle. Moreover, it is emphas-
ised in UsedSoft that the judgment only applied within
the context of the Software Directive, which is lex specialis.
Ironically, it is not always obvious whether or not software
is governed by the Software Directive. In Nintendo, the
CJEU stated that a video game was not governed by the
Software Directive but rather by the InfoSoc Directive.89
Although computer programs were the composing ele-
ments of the work in question, they were not its substance,
as it was a complex work. This despite the fact that the
creative elements, such as graphics and sound, were neces-
sarily encrypted in computer language.90 If combined
with the judgement from Art & Allposters, in which the
CJEU concluded that exhaustion under Article 4(2) of the
InfoSoc Directive was limited to tangible objects, this
limits the scope of UsedSoft even more.91

	 Late last year, the CJEU made a decision in the case Tom
Kabinet, which concerned the retail of ‘used’ e-books.92
This provided clarity on whether exhaustion applies in
the ‘distribution’ of digital goods and whether sales of
such qualified as distribution. The first of four questions
posed addressed distribution directly:

1. Does the making available remotely by download
of e-books (digital copies of books protected by copy-
right), for use during an unlimited period, against a
price which enables the copyright holder to obtain
remuneration corresponding to the economic value
of the work, qualify as ‘distribution’ in the meaning of
Article 4(1) of the InfoSoc Directive?

The CJEU decided that sale of “second-hand” e-books
does not qualify as distribution, but rather as communi-
cation to the public, which is not subject to exhaustion
under Article 3(3) InfoSoc. The Court thus confirmed
that the InfoSoc Directive enjoys a more narrow defini-
tion of distribution than the application of the Software
Directive as seen in UsedSoft. This is consistent with the
general principle of proportionality in EU law and case
law alike.93 Consider the CJEU’s words in Laserdisken:

‘[The principle of proportionality] requires that mea-
sures implemented through Community provisions be
appropriate for attaining the objective pursued and
must not go beyond what is necessary to achieve it.’94

As concerns this objective, the CJEU often refers to reci-
tals for the teleological interpretation of a work.95 In the
case of the InfoSoc Directive, these goals include preser-
ving and developing creativity in the interests of authors
and consumers alike, protecting intellectual property in
order to guarantee an appropriate reward for the use of
works and to provide the opportunity for satisfactory re-
turns on investment, and providing a rigorous and effective
system of protection to ensure that European cultural cre-
ativity and production receive the necessary resources
and of safe-guarding the independence and dignity of
artistic creators and performers.96 These aims, applied to
a FOSS environment, support that a proportional reading
of the exhaustion doctrine would be a narrow one.
Another interpretation would undermine open source
itself and thereby the work of the author and enjoyment
of the consumer/user.
	 The CJEU has been seen to consider situations in their
entirety, whether they be situations of transfer, such as in
the UsedSoft case – where the downloading of the pro-
gram and the subsequent licence agreement (now sales

– 5 0 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

agreement) were seen as an indivisible act – or considera-
tions of copyright-protected works, such in the Nintendo
case – where the video game was considered in its entirety,
beyond its encrypted form. This indicates that FOSS will
also be viewed broadly, which means that its characteris-
tics might differ depending on if the Software Directive or
the InfoSoc Directive is applied. Any type of program can
be FOSS, whether it constitutes a simple function not
exceeding a few rows of source code or an entire video
game. Which of the directives applies will have to be
evaluated on a case-by-case basis. Since Tom Kabinet and
UsedSoft arrived at contrasting decisions, this question
will likely be the main issue in future disputes.

3. PATENTS
3.1. Issues Specific to FOSS

With copyright, an author is almost certain that the copy-
right of an original work is entirely their own. This means
that when external software is used, you can assume that
you are not trespassing on another’s rights, as long as you
comply with the licence conditions.97 While this, as dis-
cussed, is not as simple as it may sound, it is still a lot
simpler than the issue of patents. The two conditions that
an author may rely on – originality and compatibility –
will likely not protect them in situations with patent protec-
tion. This is specifically in contrast to the principles of
FOSS.
	 First, this is due to the area of protection of patents. In
copyright, if two authors have the same clever idea, they
are very likely to have come up with different implemen-
tations/codes, which means they are not at risk for infrin-
ging each other's works. However, a patent will only be
granted to one of the creators for the technical idea, which
means the other cannot effectively use his or hers (diffe-
rent) code in question without risking patent infringe-
ment. This situation is in stark contrast to the nature of
FOSS, which wants to promote widespread development
and improvement and – most importantly – freedom in
regards to software use.
	 Second, many patent-licensing schemes are quite diffe-
rent from copyright licences. Often, they entail running
royalties and the obligation to report sales, which are con-
tradictory per se to the freedom to make copies, distribute
and modify the software as one pleases. Only royalty-free
patent licences are compatible with FOSS – not licences
that adhere to the FRAND terms.98

In summary, the possibility of patent protection for these
types of inventions is actually detrimental to open source,
because even if a user of FOSS complies completely with
the licence it is released under, they might still unk-
nowingly be infringing a patent which is granted for the
idea which the FOSS is an implementation of. In fact, not
even the author of the software usually knows whether
their code is an infringement of a patent, as they can be
hard to find – authors usually simply depend on the
knowledge that their work is original. An author might
not have the means to acquire a licence after the fact and
obviously the publishing of source code makes proving
infringement very easy for the patent holder.99

3.2. Possible Solutions
3.2.1. Third Party Patent Holder
In the situation where the patent holder is not associated
with the FOSS, there are a few things the software developer
could do. It is often argued that a developer can invent
around an existing patent, in such a manner that their
implementation does not touch the patent area. However,
patent protection is often too broad and can be interpreted
to encompass an entire problem rather than a solution.
This means that it matters very little in what way a solu-
tion is phrased, as any solution to the same problem will
be an infringement. Moreover, the patent, due to the broad
formulation, often includes standards. It would not be
possible to use such a standard without acquiring a patent
licence.100
	 Another solution could be to make use of either shim-
ming101 or plug-ins102 in a modular system. These are both
ways in which the patented part can be embedded into a
separate, patent-licence compliant part which merely
interacts with other parts, which can then remain FOSS-li-
censed. It is, so to speak, a separation of interacting parts.
However, neither solution is optimal – for two reasons.
First, this unnecessarily increases the complexity of a pro-
gram, and second – and most importantly – the FOSS
cannot then implement a patented standard, but merely
make use of it. Thus, the more such patents are granted,
the more FOSS would shrink.103
	 The best thing to hope for, which would leave intact the
disparate intellectual property protections of copyright
and patents while simultaneously respecting the nature
of FOSS and even software as a whole, would be that pure
software could not infringe upon a patent which is granted
for a CII or another type of software-embedded invention,

97	 Ibid.
98	 ibid. 43.
99	 Arnoud Engelfriet, ‘Octrooirisico’s bij Open

Source Software’ (Ius Mentis, 6 November
2018) https://www.iusmentis.com/
computerprogrammas/opensourcesoftware/
octrooirisicos/ accessed 9 March 2020.

100	 European Parliament (n 21) 47.
101	 Traditionally, a shim refers to a thin sheet of

metal which one might use to link together

two not entirely compatible parts, by filling
the gap when the width or breadth of one
component does not match the other. In
programming, its function is similar. It is
usually an API which translates signals from
one part into signals that another can
process. It might also be used to connect a
patent-protected part to a FOSS program.

102	 A component that adds a specific feature to
an existing program. It exists separately from

the program, but interacts with it. A
patent-protected program may be embodied
in a plug-in so that it can be added to
another program.

103	 European Parliament (n 21) 46.
104	 T-1099/06 (Transgenic plants cells/MAX

PLANCK) of 30.1.2008, ECLI:EP:-
BA:2008:T109906.20080130, Reasons for the
Decision, p. 1-6.

105	 European Parliament (n 21) 48.

– 5 1 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

because computer programs as such are excluded from
protection. Though teleologically consistent with the
EPC, this is an entirely uncertain conclusion, made more
so by the national nature of patents. As yet, national courts
have the exclusive jurisdiction in patent infringement
matters under Article 1 EPC. Moreover, the EPO ruled in
Max Planck that there is no principle of binding case law
in these matters.104 This means that in the current absence
of a Unitary Patent or binding Union-level case law, these
matters are up to the sovereign nations and interpreta-
tions might differ greatly.

3.2.2. Patent Provisions in Copyleft Licences
If the party that holds the patent, but not the author of
the FOSS, is involved in the distribution chain there are
more possibilities. One of them is enclosing a patent pro-
vision within the licence. Existing provisions concerning
patents most commonly take one of two forms. These are
retaliation clauses and express patent-licensing clauses.
The former entails that if a patent holder who receives the
FOSS further distributes a certain computer program and
then requires any of the recipients or the author to obtain
a patent licence for that same program, the FOSS licence
is terminated. This would mean that the patent holder
had no right to distribute the program in the first place.
This means that if patent infringement is claimed, there
will be retaliation in the form of a copyright infringement
claim.105 Presumably, however, the author of the program
would not be affected by this, because they grant the
licence and thus are not subject to the terms for a licensee.
There is a possibility that the author would then pursue
litigation against recipients of the copyleft licence, clai-
ming patent infringement. Most likely, such conduct
would be prohibited by law as misleading practice.
However, this is not entirely certain and pursuing litiga-
tion would add further complexity to an already complex
situation, which would not support FOSS. It would be
best if such a risk were avoided altogether.
	 The other type of provision is the express patent clause.
With the passing of time, more major FOSS licences have
included a patent licence provision in their licence. Most
often, this takes one of two forms. In the first, a patent
licence is granted only in regards to the modifications that
the patent holder has made to the program. Thus, another
contribution in the same program, but not by the patent
holder, might still trigger patent infringement. The
MPLv2 includes such a clause in section 2.1., which states
that:

Each Contributor hereby grants You a world-wide, roy-
alty-free, non-exclusive license:
(2) under Patent Claims of such Contributor to make,
use, sell, offer for sale, have made, import, and other-
wise transfer either its Contributions or its Contributor
Version.

Although this is helpful in the sense that it eliminates the
risk of misleading conduct on the part of patent holders
associated with the program, it still gives no guarantee to
a licensee that they are not infringing upon any patents.
Considering the nature of software and patents, it is not

unimaginable that a contributor might modify the program
and thereby infringe a claim of the mentioned patent
which is not covered by such a clause.
	 A second form of patent licence, such as in the GPLv3,
is broader still. It covers all patents on distributed code,
regardless of whether the patent holder was a contributor
or merely received and distributed the code. The phrasing
in section 11 of the GPLv3 is as follows:

‘Each contributor grants you a non-exclusive, world-
wide, royalty-free patent license under the contributor's
essential patent claims, to make, use, sell, offer for sale,
import and otherwise run, modify and propagate the
contents of its contributor version.

If you convey a covered work, knowingly relying on a
patent license, and the Corresponding Source of the
work is not available for anyone to copy, free of charge
and under the terms of this License, through a publicly
available network server or other readily accessible
means, then you must either (1) cause the Correspon-
ding Source to be so available, or (2) arrange to deprive
yourself of the benefit of the patent license for this par-
ticular work, or (3) arrange, in a manner consistent
with the requirements of this License, to extend the
patent license to downstream recipients. “Knowingly
relying” means you have actual knowledge that, but for
the patent license, your conveying the covered work in
a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable
patents in that country that you have reason to believe
are valid.’

– 5 2 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

Here, the contributor is not only responsible for their own
patents, but also for patents they know to be valid in the
relevant country, effectively targeting cooperation
between third party patent holders and contributors. More-
over, the patent holder does not merely grant the licence
for their contributions, but for any contributions relevant
to the work. This grants more protection to the licensee,
but might also be an undue burden for a contributor. It is
feasible that a contributor, especially one in a corporate
capacity, might be the licensee of multiple CII patents.
Carrying the burden of downstream infringements on
these patents would be a heavy responsibility. However,
the licence does emphasise that the contributor has to
‘have actual knowledge’ than such downstream conduct
would infringe any such patents. In the EU, this would
probably translate to application of the test of the reaso-
nable person, who knows or should have known.

3.2.3. Implied Patent Licences
Not all FOSS licences include express patent provisions –
this is the case for most older versions. Here, the question
arises whether such a licence should be taken to be implicit.
In common law systems, this is the doctrine of implied
licence. Many civil law systems of Europe have not esta-
blished similar legal doctrine, but the following can be
assumed to apply in analogy to the principles of silent or
tacit agreement.106 Naturally, whether or not this applies
depends heavily on the licence itself and how it is formu-
lated, but to show how this might be analysed, the BSD
licence (which is permissive) and the GPLv2 will be used
as examples.
	 In the BSD, there is no mention of a patent licence.

However, it should also be noted that there is no express
statement indicating that the licence is granted (only) under
copyright. The same holds true for the MIT licence and
the GPLv2, although the latter does limit the activities
covered to distribution, modification and copying, which
are associated with copyright.107 Thus, the absence of ex-
plicit mentioning does not necessarily warrant the con-
clusion that patent rights are excluded from the licence.
In fact, given that the right to ‘copy’, which is a quintes-
sential copyright, is omitted from the licence and that
there are no other provisions stating a grant exclusive to
copyright might be argued to mean that the grant would
cover all IP rights relevant to the program, including
patents.108 This conclusion might prove to be even more
valid in the EU territory, in whose Member States the legal
terminology might not correspond to the terms set out in
the licence, which overwhelmingly originate in US law.
	 In section 7 of the GPLv2, the following is given:

‘If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other per-
tinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of
the Program by all those who receive copies directly or
indirectly through you, then the only way you could
satisfy both it and this License would be to refrain enti-
rely from distribution of the Program.’

This does not explicitly state the grant of a patent licence,
but any other conduct would be contrary to its phrasing.
It results in a compulsory, royalty-free patent licence; not
only does the contributor thereby licence their own patent,
they are also obliged to obtain a licence for third party
patents they are a licensee to, not only for the licensor but
also for every downstream licensee.109 This is consistent
with the express patent licence in the GPLv3.
	 These examples further illustrate the difference between
permissive and copyleft licences. In the case of a FOSS
program acquired by a patent holder, who wishes to use
that program and redistribute it, the BSD poses no pro-
blems. As it is permissive, the acquirer may simply opt to
license the resulting product under a different licence and
thereby protect their patent. However, for software licensed
under the GPL, the acquirer is obliged to license a resul-
ting product under that same licence. Thus, they would
have to provide a licence for every single downstream reci-
pient. This effectively negates patent rights within the
territory of the GPL. If we read the FSF’s words, this was
presumably their aim.

‘Every program is threatened constantly by software
patents. States should not allow patents to restrict
development and use of software on general-purpose
computers, but in those that do, we wish to avoid the
special danger that patents applied to a free program
could make it effectively proprietary.’110

In summary, it is likely that there is some type of implied
patent licence in most FOSS licences. There certainly is in
the copyleft licences, as concerns the patent claims that

– 5 3 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

can be read in the software. The exact terms depend on
the wording of the licence, which could of course expressly
exclude any patent rights. However, for the licence to be
effective, it would be either illogical or purposefully mis-
leading to exclude all patent rights, as this would make it
impossible to use the source code without triggering it.
Many licences do not contain a clause that permits use,
modification and distribution only under copyright,
which would be interpreted to permit use, modification
and distribution in general and thus also in regard to
potential patent rights.

3.3. Patent Exhaustion

If, as set out, exhaustion applies to a FOSS licence, and the
author of the corresponding software further holds a pa-
tent which reads into said software, their distribution
rights in regard to that copy of the software would be ex-
hausted.
	 However, the EPC has no provisions on patent exhaus-
tion. Additionally, it is not clear whether process patents
– which CII patents nearly always are, as they encompass
an idea rather than an implementation – can be exhau-
sted and how that would impact the downstream distri-
bution. Furthermore, the different courts in the EU might
have very different interpretations.
	 Moreover, exhaustion usually only encompasses the use
and distribution rights, not making new copies and dist-
ributing those. Then again, making a copy of a process is
hardly possible. Even more than in the case of copyright,
it is unlikely that the exhaustion doctrine would be app-
lied in this context. Furthermore, it would not be a suitable
solution, as it could not encompass modified downstream
distribution and thus not guarantee risk-free conduct for
the licensees.
	 All things considered, patent rights within FOSS are
even more difficult to define than their copyright counter-
parts. This is unsurprising, as the licences often do not
expressly mention patent rights – and nor do the com-
monly used licences originate in patent law. Lastly, there
is no mandatory legislation at the EU level, and patents
embedded in software are not mentioned, except in the
exclusion from patentability for computer programs in
Article 52(2)(c) EPC. National legislations can differ
greatly, which is problematic considering the international
nature of FOSS. Ideally, the Unitary Patent will be brought
to life sooner rather than later and encompass a section on
patents embodied in software, to clarify these matters.
The corresponding legislation might interpret its section
corresponding to Article 52(2)(c) EPC to mean that pure
software cannot infringe upon a patent, as a patent on
software is prohibited.

4. CONCLUSION AND RECOMMENDATIONS
“Open source is like Prison Break for developers, can
we put a fence around this?”111

 – Audience member at the Open Source Business Con-
ference, 2010

The above quote raises a good question: can we define the
boundaries of open source? The copyleft licence takes in-
spiration from US copyright law and reverses it. Instead of
providing an author with the exclusive right to prevent
use, reproduction, (re-)distribution, modification and
communication, every recipient is provided with the ‘in-
clusive’ right to use, reproduce, (re-)distribute, modify
and communicate the program under one condition: the
program must remain free, so upon distribution the source
code must be disclosed or available. This condition is
where copyleft differs from permissive licences, which do
not require this. Programs licensed under a permissive
licence may be included in proprietary software without
further requirements. In the case of the GPL – the original
copyleft licence – this requirement goes even further by
requiring that any reproduction, in whole or in part, modi-
fied or not, also be licensed under the same version of the
GPL. The next question would be how we should define
that work and, indeed, put a fence around open source.
	 Software is protected by copyright under EU law, deno-
ting computer programs as ‘literary works’ under the Berne
Convention. Thereunder, it is the source code as written
by a developer that is protected, in consistency with a lite-
rary work – but less so with the nature of software, seeing
as software serves a functional purpose, as a set of instruc-
tions for a computer to carry out. Due to this discrepancy,
and in spite of Article 52(2)(c) EPC which excludes com-
puter programs from patentability, there has been a rise in
patents on software in the last few years. Companies that
develop software, in one way or another, have an interest
in utilising the vast amount of available open source code,
because it has a low acquisition cost. This means the
developers and the budget can be focused on qualitative
innovation rather than having to start from scratch.

106	 Haapanen (n 18) 289.
107	 Ibid. 236.
108	 Ibid. 237.
109	 Ibid. 237.

110	 GPLv3, preamble, para. 9.
111	 Angie Hirata ‘Top 10 Quotes from OSBC 2010

and What It Means for Open Source
Developers’ (ActiveState, 22 March 2010)

https://www.activestate.com/blog/
top-10-quotes-osbc-2010-and-what-it-
means-open-source-developers/ accessed 9
March 2020.

– 5 4 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

“Open source isn’t about saving money, it’s about
doing more stuff, and getting incremental innovation
with the finite budget you have.”112

– Jim Whitehurst, CEO, Red Hat

Ideally, the same company will want to avoid disclosure of
proprietary source code as well as high-risk infringement
suits. A copyleft licence requires disclosure in addition to
distribution under the licence originally used; an obliga-
tion that encompasses derivative works, making the scope
of that definition crucial. In light of the aim of the Software
and InfoSoc Directives, as well as the nature of software, a
derivative work should not be interpreted broadly. Intero-
perability is a key component of software and participa-
tion in the market requires compatibility with established
software. Consequently, it would not be sensible to define
a computer program as a derivative work for the sole reason
that certain components enable interoperability. A sugge-
sted definition is ‘a work based on an original work, in its
entirety or in part, unless (a) the part in question exists
exclusively to aid interoperability and promotion of a har-
monised software environment and (b) the remaining
connected software has been developed independently.’ A
useful tool to make assessments thereof would be to esta-
blish a legal fiction: a person who can read source code
and software architecture as an average person can read
text.
	 The effect of the digital exhaustion doctrine, which ori-
ginated in UsedSoft, should also be interpreted conserva-
tively. Subsequent case law shows that the CJEU supports
such an interpretation. In the case of FOSS licences, the
dispersion will likely not constitute a sale, due to a lack of
protection or possible remuneration for the author in
other cases. In addition, imposing potential measures to
ensure compliance, such as encoded keys, would contra-
dict the nature of FOSS. The application of exhaustion
has differed between the Software Directive and the InfoSoc
Directive, with the Software Directive supporting a stricter
reading. This indicates that simpler code might be more
easily exhausted, as more intricate computer programs
have been regarded as complex works governed by the
InfoSoc Directive.

Shifting the focus to patents, they protect the underlying
idea of a computer program rather than its implementa-
tion, unlike copyright. Their reach within FOSS licences is
the subject of controversy. This is unsurprising, conside-
ring that most FOSS licences neither expressly mention
patent rights nor originate in patent terminology. Fur-
thermore, the EU lacks harmonised legislation for pa-
tents in general and especially for patents on computer-
implemented inventions. Fragmentation between national
legislations is problematic, given the international nature
of software.
	 Still, some FOSS licences do expressly mention patent
rights. Some cases, such as the GPLv3, nearly eliminate a
contributor’s patent rights, while others, such as the
MPLv2, do not cover downstream modifications,113. Fin-
ding a balance is difficult, because one wants to maintain
respect for IP rights while simultaneously enabling the
continuing existence of FOSS, specifically in a copyleft
context. A task made harder by the lack of oversight
regarding the quality, quantity and classification of patents
on CIIs, which makes identifying infringing acts difficult.
	 As for licences that do not expressly mention patent
rights, proper functioning of such a licence, at least in re-
gard to software, requires that a licence is implied if the
patent holder further distributes the program. Whether
they have contributed to the program or merely distributed
it should not be of consequence, as any other interpreta-
tion would incite misleading practices. However, such
implied licences should not extend to patent claims affec-
ted by modifications of a downstream contributor who is
not the patent holder, nor to requiring a licensee of a third
party patent to provide all downstream recipients with a
licence to that patent (except in incriminating circum-
stances). These conditions should only be possible by virtue
of explicit terms.
	 Whether or not exhaustion should be applied in a FOSS
context is inadequately substantiated. Patents on compu-
ter-implemented programs are predominantly process
patents, under which it is illogical to speak of copies. Fur-
thermore, exhaustion would not affect downstream dist-
ribution and modified versions of a program and is there-
fore an inadequate solution.

112	 Ibid.
113	 Mozilla Public Licence version 2.0 (Mozilla, January 2012) <https://

www.mozilla.org/en-US/MPL/2.0/> accessed 9 March 2020.
114	 Many licences were last updated over a decade ago; the most

commonly used ones (GPLv2, GPLv3, MIT) were all published over a
decade ago.

– 5 5 –

S TO C K H O L M I N T E L L E CT U A L P R O P E R T Y L AW R E V I E W V O L U M E 3 , I S S U E 2 , D E C E M B E R 2 0 2 0

Saar Hoek

Saar Hoek holds an LL.B. in Law
from the University of Amsterdam
(2017) and an LL.M. in European
Intellectual Property Law from
Stockholm University (2019). She is
currently studying for an M.Sc. in
Artificial Intelligence at Utrecht
University.

Ideally, the Unitary Patent will come into force in the near
future and be followed by clearer definitions and prohibi-
tions concerning patents embodied in software. An inter-
pretation of Article 52(2)(c) EPC in such legislation,
showing that pure software cannot infringe a patent, as
programs for computers are excluded from patentability,
would be optimal.
	 Although there is a lot of uncertainty in the field of
FOSS licences, cautious parameters can be formulated.
The proper interpretation will vary on a case-by-case basis,
as even the applicable legislation might differ, but a nar-
row reading of a copyleft licence is generally advisable, to
ensure that companies can safely rely on open source, par-
ticipate in the market and protect investments without
risking infringement. For the same purposes and to up-
hold FOSS, relevant patent claims held by a downstream
distributor or author that might otherwise be infringed
should be regarded as being implicitly licensed upon dist-
ribution by said patent holder. Exhaustion is unlikely to
apply in either copyright- or patent-related cases, but this
remains uncertain until the CJEU has made a judgment
on the matter.
	 The disorganised protection for computer programs
under copyright in both the Software and InfoSoc Direc-
tives, as well as under patent law, needs to be addressed.
Ideally, this would be done in a binding regulation at the
EU level. It might be worth considering to depart from the
current protective system and create a sui generis protec-
tive IP right for software which respects both its imple-
mentation and functionality, as was initially intended by
WIPO in the 1980s. Otherwise, a directive or regulation
on CII patents that addresses their interactions with
copyright is necessary. In addition to conclusive legisla-
tion and case law, it might prove useful to establish a stan-
dard-setting organisation for FOSS licences, especially for
the EU, which is home to many official languages and legal
systems. This would promote the quality of such licences
and ensure clear, EU-compatible terminology, as well as
more frequent updates to counteract the neglect that
many FOSS licences are currently subject to.114

